AIEEE- 2004 Chemistry Paper

76.	Which of the following sets of quantum numbers is correct for an electron in 4f orbital?		
	(1) n = 4, l = 3, m = +4, s = $+\frac{1}{2}$	(2) n = 3, l = 2, m = -2, S = + $\frac{1}{2}$	
	(3) n =4, l = 3, m = +1, s = + $\frac{1}{2}$	(4) n =4, l = 4, m -4, s = $-\frac{1}{2}$	
Ans.	n =4, l = 3, m = +1, s = + ¹ / ₂		
77.	Consider the ground state of Cr atom (Z = quantum numbers I =1 and 2 are respectiv (1) 12 and 4 (3) 16 and 4	 24). The number of electrons with the azimuthal rely (2) 16 and 5 (4) 12 and 5 	
Ans.	12 and 5		
78.	Which one the following ions has the higher (1) Li ⁺ (3) O ²⁻	est value of ionic radius? (2) F ⁻ (4) B ³⁺	
Ans.	O ²⁻		
79.	The wavelength of the radiation emitted, w stationary state 1, would be (Rydberg cons (1) 91 nm (3) 406 nm	when in hydrogen atom electron falls from infinity to stant = 1.097×10^7 m ⁻¹) (2) 9.1×10^{-8} nm (4) 192 nm	
Ans.	91 nm		
80.	The correct order of bond angles (smallest (1) $H_2S < SiH_4 < NH_3 < BF_3$ (3) $H_2S < NH_3 < SiH_4 < BF_3$	first) in H ₂ S, NH ₃ , BF ₃ and SiH ₄ is (2) H ₂ S < NH ₃ < BF ₃ < SiH ₄ (4) NH ₃ < H ₂ S < SiH ₄ < BF ₃	
Ans.	$H_2S < NH_3 < SiH_4 < BF_3$		
81.	Which one the following sets of ions repres (1) K ⁺ , Ca ²⁺ , Sc ³⁺ , Cl ⁻ (3) K ⁺ , Cl ⁻ , Mg ²⁺ , Sc ³⁺	sents the collection of isoelectronic species? (2) Na ⁺ , Mg ²⁺ , Al ³⁺ , Cl ⁻ (4) Na ⁺ , Ca ²⁺ , Sc ³⁺ , F ⁻	
Ans.	K ⁺ , Ca ²⁺ , Sc ³⁺ , Cl ⁻		
82.	Among AI_2O_3 , SiO_2 , P_2O_3 and SO_2 the co (1) $SO_2 < P_2O_3 < SiO_2 < AI_2O_3$ (3) $AI_2O_3 < SiO_2 < SO_2 < P_2O_3$	rrect order of acid strength is (2) $AI_2O_3 < SiO_2 < P_2O_3 < SO_2$ (4) $SiO_2 < SO_2 < AI_2O_3 < P_2O_3$	
Ans.	$AI_2O_3 < SiO_2 < P_2O_3 < SO_2$		
83.	 The bond order in NO is 2.5 while that in NO⁺ is 3. Which of the following statements is true for these two species? (1) Bond length in NO⁺ is greater than in NO (2) Bond length is unpredictable (3) Bond length in NO⁺ in equal to that in NO (4) Bond length in NO is greater than in NO⁺ 		

- **Ans.** Bond length in NO is greater than in NO⁺
- 84. The formation of the oxide ion O²⁻(g) requires first an exothermic and then an endothermic step as shown below

 $O(g) + e^{-}O^{-}(g)\Delta H^{\circ} = -142 \text{ kJmol}^{-1}$

 $O^{-}(g) + e^{-}O^{2-}(g)\Delta H^{\circ} = 844 \text{ kJmol}^{-1}$

- (1) Oxygen is more electronegative
- (2) O ion has comparatively larger size than oxygen atom
- (3) O⁻ ion will tend to resist the addition of another electron
- (4) Oxygen has high electron affinity
- **Ans.** O⁻ ion will tend to resist the addition of another electron
- 85. The states of hybridization of boron and oxygen atoms in boric acid (H_3BO_3) are respectively (1) sp² and sp² (3) sp³ and sp² (4) sp² and sp³
- **Ans.** sp^2 and sp^3

86. Which one of the following has the regular tetrahedral structure? (1) XeF_4 (3) BF_4^- (4) SF_4

- Ans. BF₄
- 87. Of the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them?

(1) (n -1)d ⁸ ns ²	(2) (n-1)d⁵ns²
(3) (n-1)d ³ ns ²	(4) (n-1)d⁵ns⁻¹

- **Ans.** $(n-1)d^5ns^2$
- 88. As the temperature is raised from 20°C to 40°C, the average kinetic energy of neon atoms changes by a factor of which of the following?

(1) ½	(2) 2
(3) $\frac{313}{293}$	(4) $\sqrt{\frac{313}{293}}$

- **Ans.** <u>313</u>
- 293

89. The maximum number of 90° angles between bond pair of electrons is observed in (1) dsp³ hybridization (2) sp³d² hybridization

(3) dsp² hybridization

- 2) sp^{od-} hybridization
- (4) sp³d hybridization
- **Ans.** $sp^{3}d^{2}$ hybridization
- 90. Which one of the following aqueous solutions will exhibit highest boiling point?
 (1) 0.01 M Na₂SO₄
 (2) 0.015 M glucose
 (3) 0.015 M urea
 (4) 0.01 M KNO₃
- **Ans.** 0.01 M Na₂SO₄
- 91. Which among the following factors is the most important in making fluorine the strongest oxidizing halogen?

	(1) Electron affinity(3) Hydration enthalpy	(2) Bond dissociation energy(4) Ionization enthalpy	
Ans.	Bond dissociation energy		
92.	In Vander Waals equation of state of the gas law, the constant 'b' is a measure of (1) intermolecular repulsions (2) intermolecular collisions per unit volume (3) Volume occupied by the molecules (4) intermolecular attraction		
Ans.	Volume occupied by the molecules		
93.	The conjugate base of $H_2PO_4^{-1}$ is (1) PO_4^{3-1} (3) H_3PO_4	(2) HPO_4^{2-} (4) P_2O_5	
Ans.	HPO ₄ ²⁻		
94.	6.02×10 ²⁰ molecules of urea are present in solution is (1) 0.001 M (3) 0.02 M	100 ml of its solution. The concentration of urea (2) 0.1 M (4) 0.01 M	
Ans.	0.01 M		
95.	To neutralize completely 20 mL of 0.1 M aqueous solution of phosphorous acid (H ₃ PO ₃), the volume of 0.1 M aqueous KOH solution required is (1) 10 mL (2) 60 mL (3) 40 mL (4) 20 mL		
Ans.	40 mL		
96.	 For which of the following parameters the structural isomers C₂H₅OH and CH₃OCH₃ would be expected to have the same values? (Assume ideal behaviour) (1) Heat of vaporization (2) Gaseous densities at the same temperature and pressure (3) Boiling points (4) Vapour pressure at the same temperature 		
Ans.	Gaseous densities at the same temperature and pressure		
97.	Which of the following liquid pairs shows a positive deviation from Raoult's law?(1) Water – hydrochloric acid(2) Acetone – chloroform(3) Water – nitric acid(4) Benzene – methanol		
Ans.	Benzene – methanol		
98.	 Which one of the following statements is false? (1) Raoult's law states that the vapour pressure of a components over a solution is proportional to its mole fraction (2) Two sucrose solutions of same molality prepared in different solvents will have the same freezing point depression (3) The correct order of osmotic pressure for 0.01 M aqueous solution of each compound is BaCl₂ > KCl > CH₃COOH > sucrose (4) The osmotic pressure (π) = MRT, where M is the molarity of the solution 		

- **Ans.** Two sucrose solutions of same molality prepared in different solvents will have the same freezing point depression
- 99. What type of crystal defect is indicated in the diagram below? Na⁺ Cl⁻ Na⁺Cl⁻ Na⁺Cl⁻ Cl⁻ D Cl⁻ Na⁺ Na⁺ Na⁺ Cl⁻ D Cl⁻ Na⁺ Cl⁻ Cl⁻ Na⁺Cl⁻ Na⁺ Na⁺ (1) Frenkel defect
 (2) Frenkel and Schottky defects
 (3) Interstitial defect
 (4) Schottky defect
- **Ans.** Schottky defect
- 100. An ideal gas expands in volume from 1×10^{-3} m³ to 1×10^{-2} m³ at 300 K against a constant pressure of 1×10^5 Nm⁻². The work done is
 - (1) -900 J (3) 2780 kJ (4) -900 kJ
- **Ans.** -900 J
- 101. In hydrogen oxygen fuel cell, combustion of hydrogen occurs to
 - (1) generate heat
 - (2) remove adsorbed oxygen from electrode surfaces
 - (3) produce high purity water
 - (4) create potential difference between the two electrodes
- Ans. create potential difference between the two electrodes

102. In first order reaction, the concentration of the reactant decreases from 0.8 M to 0.4 M in 15 minutes. The time taken for the concentration to change from 0.1 M to 0.025 M is
(1) 30 minutes
(2) 60 minutes
(3) 7.5 minutes
(4) 15 minutes

- Ans. 30 minutes
- 103. What is the equilibrium expression for the reaction $P_{4(s)} + 5O_{2(g)} = P_4O_{10(s)}$? (1) Kc = $[P_4O_{10}] / P_4] [O_2]^5$ (2) Kc = $1/[O_2]^5$ (3) Kc = $[O_2]^5$ (4) Kc = $[P_4O_{10}] / 5[P_4][O_2]$
- **Ans.** $Kc = 1/[O_2]^5$

104. For the reaction, $CO(g) + Cl_2(g) \longrightarrow COCl_2(g)$ the $\frac{K_p}{K_c}$ is equal to (1) $\frac{1}{RT}$ (2) 1.0 (3) \sqrt{RT} (4) RT

Ans. $\frac{1}{RT}$

105. The equilibrium constant for the reaction $N_2(g) + O_2(g) = 2NO(g)$ at temperature T is 4×10^{-4} . The value of Kc for the reaction NO(g) $= \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$ at the same temperature is

(1) 2.5×10^2	(2) 0.02
(3) 4×10 ⁻⁴	(4) 50

- **Ans.** 50
- 106. The rate equation for the reaction $2A + B \longrightarrow C$ is found to be: rate k[A][B]. The correct statement in relation to this reaction is that the
 - (1) unit of K must be s⁻¹
 - (2) values of k is independent of the initial concentration of A and B
 - (3) rate of formation of C is twice the rate of disappearance of A
 - (4) $t_{1/2}$ is a constant
- Ans. values of k is independent of the initial concentration of A and B
- 107. Consider the following E° values

- **Ans.** 0.91 V
- 108. The molar solubility product is K_{sp} . 's' is given in terms of K_{sp} by the relation

$(1) \ \mathbf{s} = \left(\frac{\mathbf{K}_{sp}}{128}\right)^{1/4}$	(2) $s = \left(\frac{K_{sp}}{256}\right)^{1/5}$
(3) $s = (256K_{sp})^{1/5}$	(4) $s = (128K_{sp})^{1/4}$
(

- Ans. $s = \left(\frac{K_{sp}}{256}\right)^{10}$ 109. The standard e.m.f of a cell, involving one electron change is found to be 0.591 V at 25°C.
 - The equilibrium constant of the reaction is $(F = 96,500 \text{ C mol}^{-1}: R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1})$ (1) 1.0×10^{1} (2) 1.0×10^{30} (3) 1.0×10^{10} (4) 1.0×10^{5}
- **Ans.** 1.0×10¹⁰
- 110. The enthalpies of combustion of carbon and carbon monoxide are -393.5 and -283 kJ mol⁻¹ respectively. The enthalpy of formation of carbon monoxide per mole is
 (1) 110.5 kJ
 (2) -110.5 kJ
 (3) -676.5 kJ
 (4) 676.5 kJ
- **Ans.** -110.5 kJ
- 111. The limiting molar conductivities Λ° for NaCl, KBr and KCl are 126, 152 and 150 S cm² mol⁻¹ respectively. The Λ° for NaBr is (1) 128 S cm² mol⁻¹ (2) 302 S cm² mol⁻¹
 - (3) $278 \text{ S cm}^2 \text{ mol}^{-1}$ (4) $176 \text{ S cm}^2 \text{ mol}^{-1}$

- **Ans.** $128 \text{ S cm}^2 \text{ mol}^{-1}$
- 112. In a cell that utilises the reaction $Zn(s) + 2H^{+}(aq) \longrightarrow Zn^{2+}(aq) + H_{2}(g)$ addition of $H_{2}SO_{4}$ to cathode compartment, will
 - (1) lower the E and shift equilibrium to the left
 - (2) increases the E and shift equilibrium to the left
 - (3) increase the E and shift equilibrium to the right
 - (4) Lower the E and shift equilibrium to the right
- **Ans.** increase the E and shift equilibrium to the right
- 113. Which one the following statement regarding helium is incorrect?
 - (1) It is used to fill gas balloons instead of hydrogen because it is lighter and non inflammable
 - (2) It is used in gas cooled nuclear reactors
 - (3) It is used to produce and sustain powerful superconducting reagents
 - (4) It is used as cryogenic agent for carrying out experiments at low temperatures
- Ans. It is used to fill gas balloons instead of hydrogen because it is lighter and non inflammable
- 114. Identify the correct statements regarding enzymes
 - Enzymes are specific biological catalysts that can normally function at very high temperature (T ~ 1000 K)
 - (2) Enzymes are specific biological catalysts that the posses well defined active sites
 - (3) Enzymes are specific biological catalysts that can not be poisoned
 - (4) Enzymes are normally heterogeneous catalysts that are very specific in their action
- Ans. Enzymes are specific biological catalysts that the posses well defined active sites
- 115. One mole of magnesium nitride on the reaction with an excess of water gives
 - (1) one mole of ammonia
 - (3) two moles of ammonia
- (2) two moles of nitric acid(4) one mole of nitric acid

- Ans. two moles of ammonia
- 116. Which one of the following ores is best concentrated by froth floatation method?
 - (1) Magnetite

(2) Malachite

(3) Galena

(4) Cassiterite

Ans. Galena

- 117. Beryllium and aluminium exhibit many properties which are similar. But the two elements differ in
 - (1) exhibiting maximum covalency in compound
 - (2) exhibiting amphoteric nature in their oxides
 - (3) forming covalent halides
 - (4) forming polymeric hydrides
- Ans. exhibiting maximum covalency in compound
- Aluminium chloride exists as dimer, Al₂Cl₆ in solid state as well as in solution of non-polar solvents such as benzene. When dissolved in water, it gives
 (1) Al³⁺ + 3Cl⁻
 (2) Al₂O₃ + 6HCl
 - (1) $AI^{3^{-}} + 3CI$ (2) $AI_2O_3 + 6HCI$ (3) $[AI(OH)_6]^{3^{-}}$ (D) $[AI(H_2O)_6]^{3^{+}} + 3CI^{-}$
- **Ans.** $[AI(H_2O)_6]^{3+} + 3CI^{-}$

- 119. The soldiers of Napolean army while at Alps during freezing winter suffered a serious problem as regards to the tin buttons of their uniforms. White metallic tin buttons got converted to grey powder. This transformation is related to
 - (1) an interaction with nitrogen of the air at very low temperatures
 - (2) an interaction with water vapour contained in the humid air
 - (3) a change in the partial pressure of oxygen in the air
 - (4) a change in the crystalline structure of tin
- Ans. a change in the crystalline structure of tin

120. The $E^{\circ}_{M^{+3}/M^{2+}}$ values for Cr, Mn, Fe and Co are – 0.41, +1.57, + 0.77 and +1.97 V respectively. For which one of these metals the change in oxidation state form +2 to +3 is easiest?

- (1) Cr (2) Co (3) Fe (4) Mn
- Ans. Cr

121. Excess of KI reacts with $CuSO_4$ solution and then $Na_2S_2O_3$ solution is added to it. Which of the statements is incorrect for this reaction?

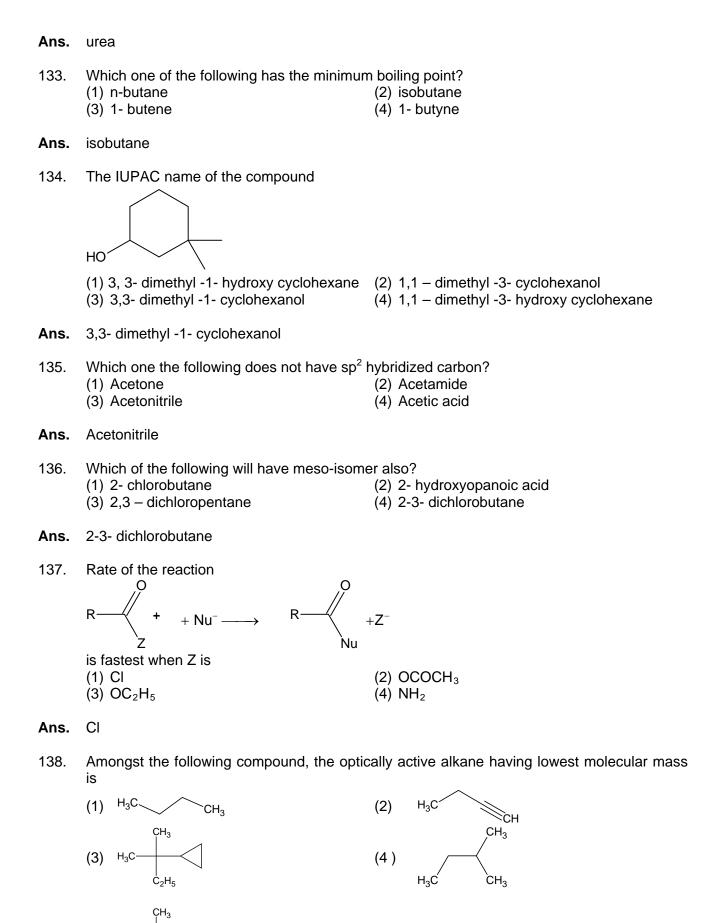
- (1) Cu_2I_2 is reduced (2) Evolved I_2 is reduced (3) $Na_2S_2O_3$ is oxidized (4) CuI_2 is formed
- **Ans.** Cul₂ is formed
- 122. Among the properties (a) reducing (b) oxidising (c) complexing, the set of properties shown by CN⁻ ion towards metal species is (1) a, b
 (2) a, b, c
 - (1) a, b (2) a, b, (3) c, a (4) b, c
- Ans. c, a
- 123. The coordination number of central metal atom in a complex is determined by
 - (1) the number of ligands around a metal ion bonded by sigma bonds
 - (2) the number of only anionic ligands bonded to the metal ion
 - (3) the number of ligands around a metal ion bonded by sigma and pi- bonds both
 - (4) the number of ligands around a metal ion bonded by pi-bonds
- **Ans.** the number of ligands around a metal ion bonded by sigma

124. Which one of the following complexes in an outer orbital complex? (1) $[Fe(CN)_6]^{4-}$ (2) $[Ni(NH_3)_6]^{2+}$

- (3) $[Co(NH_3)_6]^{3+}$
- **Ans.** $[Ni(NH_3)_6]^{2+}$
- 125. Coordination compound have great importance in biological systems. In this context which of the following statements is incorrect?

(4) $[Mn(CN)_6]^{4-}$

- (1) Chlorophylls are green pigments in plants and contains calcium
- (2) Carboxypeptidase A is an enzyme and contains zinc
- (3) Cyanocobalamin is B_{12} and contains cobalt
- (4) Haemoglobin is the red pigment of blood and contains iron


- Ans. Chlorophylls are green pigments in plants and contains calcium
- 126. Cerium (Z = 58) is an important member of the lanthanoids. Which of the following statements about cerium is incorrect?
 - (1) The common oxidation states of cerium are +3 and +4
 - (2) Cerium (IV) acts as an oxidizing agent
 - (3) The +4 oxidation state of cerium is not known in solutions
 - (4) The +3 oxidation state of cerium is more stable than the +4 oxidation state
- Ans. The +4 oxidation state of cerium is not known in solutions
- Which one the following has largest number of isomers? 127. (2) $[Co(en)_2Cl_2]^+$
 - (1) $[Ru(NH_3)_4Cl_2^+]$ (4) $[Co(NH_3)_5CI]^{2+}$
 - (3) $[Ir(PR_3)_2 H(CO)]^{2+}$
 - (R -= alkyl group, en = ethylenediamine)
- Ans. $[Co(en)_2Cl_2]^+$
- 128. The correct order of magnetic moments (spin only values in B.M.) among is (1) $[MnCl_4]^{2^-} > [CoCl_4]^{2^-} > [Fe(CN)_6]^{-4}$ (2) $[Fe(CN)_6]^{-4} > [CoCl_4]^{2^-} > [MnCl_4]^{2^-}$ (3) $[Fe(CN)_6]^{4^-} > [MnCl_4]^{2^-} > [CoCl_4]^{2^-}$ (4) $[MnCl_4]^{2^-} > [Fe(CN)_6]^{4^-} > [CoCl_4]^{2^-}$ (Atomic numbers: Mn = 25; Fe = 26, Co =27)
- **Ans.** $[MnCl_4]^{2-} > [CoCl_4]^{-2} > [Fe(CN)_6]^{-4}$
- 129. Consider the following nuclear reactions $^{238}_{92}\text{M} \rightarrow^{x}_{y}\text{N} +^{4}_{2}\text{He}$ $^{x}_{v}N \rightarrow^{A}_{B}L + 2\beta^{+}$ The number of neutrons in the element L is (1) 142 (2) 146(3) 140 (4) 144

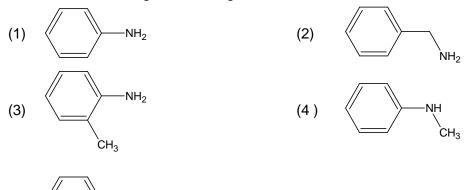
Ans. 144

130. The half – life of a radioisotope is four hours. If the initial mass of the isotope was 200 g, the mass remaining after 24 hours undecayed is

(1) 1.042 g	(2) 4.167 g
(3) 3.125 g	(4) 2.084 g

- **Ans.** 3.125 g
- 131. The compound formed in the positive test for nitrogen with the Lassaigne solution of an organic compound is
 - (1) $Fe_4[Fe(CN)_6]_3$ (2) Na₄[Fe(CN)₅NOS] (4) $Na_3[Fe(CN)_6]$ (3) $Fe(CN)_3$
- Ans. $Fe_4[Fe(CN)_6]_3$
- The ammonia evolved from the treatment of 0.30 g of an organic compound for the 132. estimation of nitrogen was passed in 100 mL of 0.1 M sulphuric acid. The excess of acid required 20 mL of 0.5 M sodium hydroxide solution hydroxide solutio for complete neutralization. The organic compound is
 - (1) acetamide (2) thiourea (3) urea (4) benzamide

Ans.


H₃C

Ċ₂H₅

139. Consider the acidity of the carboxylic acids:

(1) PhCOOH	(2) $o - NO_2C_6H_4COOH$
(3) $p - NO_2C_6H_4COOH$	(4) $m - NO_2C_6H_4COOH$

- Ans. $o - NO_2C_6H_4COOH$
- 140. Which of the following is the strongest base?

Ans.

141.	Which base is present in RNA but not in DNA?		
	(1) Uracil	(2) Thymine	
	(3) Guanine	(4) Cytosine	

 NH_2

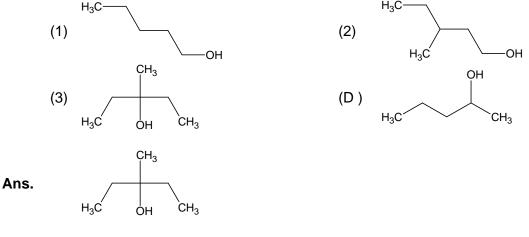
- Ans. Uracil
- 142. The compound formed on heating chlorobenzene with chloral in the presence concentrated sulphuric acid is
 - (1) gammexene
 - (3) Freon

- (2) hexachloroethane (4) DDT

DDT Ans.

- 143. On mixing ethyl acetate with aqueous sodium chloride, the composition of the resultant solution is (1) $CH_3COOC_2H_5 + NaCl$
 - (3) $CH_3COCI + C_2H_5OH + NaOH$

(2) $CH_3CI + C_2H_5COONa$


(4) $CH_3COONa + C_2H_5OH$

- Ans. $CH_3COOC_2H_5 + NaCl$
- Acetyl bromide reacts with excess of CH₃MgI followed by treatment with a saturated solution 144. of NH₄Cl given (2) acetyl iodide (1) acetone
 - (3) 2- methyl -2- propanol (4) acetamide
- 2- methyl -2- propanol Ans.
- 145. Which one of the following reduced with zinc and hydrochloric acid to give the corresponding hydrocarbon?
 - (1) Ethyl acetate (2) Butan -2-one
 - (3) Acetamide (4) Acetic acid
- Butan -2-one Ans.

- 146. Which of the following undergoes reaction with 50% sodium hydroxide solution to give the corresponding alcohol and acid?
 - (1) Phenol
 - (3) Butanal

- (2) Benzoic acid
- (4) Benzaldehyde

- Ans. Benzaldehyde
- 147. Among the following compound which can be dehydrated very easily is H_3C —

- 148. Which of the following compound is not chiral?
 - (1) 1- chloropentane
 - (3) 1-chloro -2- methyl pentane
- (2) 3-chloro-2- methyl pentane
- (4) 2- chloropentane

Ans. 1- chloropentane

149. Insulin production and its action in human body are responsible for the level of diabetes. This compound belongs to which of the following categories?

(1) A co- enzyme(3) An enzyme

- (2) An antibiotic
- (4) A hormone

Ans. A hormone

150.	The smog is essentially caused by the presence of		
	(1) O_2 and O_3	(2) O_3 and N_2	
	(3) Oxides of sulphur and nitrogen	(4) O_2 and N_2	

Ans. Oxides of sulphur and nitrogen