AIEEE-2004 edufever.com

1.	Let $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ be a relation on the set $A = \{1, 2, 3, 4\}$. The
	relation R is

(1) a function

(2) reflexive

(3) not symmetric

(4) transitive

2. The range of the function
$$f(x) = {}^{7-x}P_{x-3}$$
 is

 $(1) \{1, 2, 3\}$

(3) {1, 2, 3, 4}

(2) {1, 2, 3, 4, 5} (4) {1, 2, 3, 4, 5, 6}

3. Let z, w be complex numbers such that
$$z + iw = 0$$
 and arg $zw = \pi$. Then arg z equals

 $(1)\frac{\pi}{4}$

(2) $\frac{5\pi}{4}$

 $(3)\frac{3\pi}{4}$

(4) $\frac{\pi}{2}$

4. If
$$z = x - i y$$
 and $z^{\frac{1}{3}} = p + iq$, then $\frac{\left(\frac{x}{p} + \frac{y}{q}\right)}{\left(p^2 + q^2\right)}$ is equal to

(1) 1

(3)2

(2) -2 (4) -1

5. If
$$|z^2 - 1| = |z|^2 + 1$$
, then z lies on

(1) the real axis

(2) an ellipse

(3) a circle

(4) the imaginary axis.

6. Let
$$A = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$
. The only correct statement about the matrix A is

(1) A is a zero matrix

(2) $A^2 = I$

(3) A⁻¹does not exist

(4) A = (-1)I, where I is a unit matrix

7. Let
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 10 \end{pmatrix} B = \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{pmatrix}$$
. If B is the inverse of matrix A, then α is

(1) -2

(2)5

(3) 2

(4) -1

8.	If $a_1, a_2, a_3,, a_n,$ are in G.P., $\begin{vmatrix} loga_n & loga_{n+1} & loga_{n+2} \\ loga_{n+3} & loga_{n+4} & loga_{n+5} \\ loga_{n+6} & loga_{n+7} & loga_{n+8} \end{vmatrix}$, is	, then the value of the determinant						
	(1) 0 (3) 2	(2) -2 (4) 1						
9.	the roots of the quadratic equation							
	$(1) x^2 + 18x + 16 = 0$	(2) $x^2 - 18x - 16 = 0$						
	$(3) x^2 + 18x - 16 = 0$	$(4) x^2 - 18x + 16 = 0$						
10.	If (1 – p) is a root of quadratic equ	If $(1 - p)$ is a root of quadratic equation $x^2 + px + (1 - p) = 0$, then its roots are						
	(1) 0, 1	(2) -1, 2 (4) -1, 1						
	(3) 0, -1	(4) -1, 1						
11.	Let $S(K) = 1 + 3 + 5 + + (2K - 1) =$	Let $S(K) = 1 + 3 + 5 + + (2K - 1) = 3 + K^2$. Then which of the following is true?						
	 (1) S(1) is correct (2) Principle of mathematical induction can be used to prove the formula (3) S(K) ≠ S(K + 1) (4) S(K) ⇒ S(K + 1) 							
12.	How many ways are there to arrange the letters in the word GARDEN with the vowels in alphabetical order?							
	(1) 120 (3) 360	(2) 480 (4) 240						
13.	The number of ways of distributing 8 identical balls in 3 distinct boxes so that none of the boxes is empty is							
	(1) 5	(2) ⁸ C ₃						
	$(3) 3^8$	(4) 21						
14.	If one root of the equation $x^2 + px + 12 = 0$ is 4, while the equation $x^2 + px + q = 0$ has equal roots, then the value of 'q' is							
	$(1)\frac{49}{4}$	(2) 4						
	(3) 3	(4) 12						
15.	The coefficient of the middle term in the binomial expansion in powers of x of $\left(1+\alpha x\right)^4$ and							
	of $(1-\alpha x)^6$ is the same if α equals							
	$(1) -\frac{5}{3}$	(2) $\frac{3}{}$						
	` ' 3	`´5						
	(3) $\frac{-3}{10}$	(2) $\frac{3}{5}$ (4) $\frac{10}{3}$						
	10	U						

16. The coefficient of
$$x^n$$
 in expansion of $(1+x)(1-x)^n$ is

$$(1) (n-1)$$

(2)
$$(-1)^n (1-n)$$

$$(3)(-1)^{n-1}(n-1)^2$$

$$(4) (-1)^{n-1} n$$

17. If
$$S_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$$
 and $t_n = \sum_{r=0}^n \frac{r}{{}^nC_r}$, then $\frac{t_n}{S_n}$ is equal to

$$(1)\frac{1}{2}n$$

(2)
$$\frac{1}{2}$$
n – 1

(4)
$$\frac{2n-1}{2}$$

18. Let
$$T_r$$
 be the rth term of an A.P. whose first term is a and common difference is d. If for some positive integers m, n, m \neq n, $T_m = \frac{1}{n}$ and $T_n = \frac{1}{m}$, then a – d equals

$$(3)\frac{1}{mn}$$

(4)
$$\frac{1}{m} + \frac{1}{n}$$

19. The sum of the first n terms of the series
$$1^2 + 2 \cdot 2^2 + 3^2 + 2 \cdot 4^2 + 5^2 + 2 \cdot 6^2 + ...$$
 is $\frac{n(n+1)^2}{2}$ when n is even. When n is odd the sum is

$$(1)\frac{3n\big(n+1\big)}{2}$$

(2)
$$\frac{n^2(n+1)}{2}$$

$$(3)\frac{n(n+1)^2}{4}$$

$$(4) \left\lceil \frac{n(n+1)}{2} \right\rceil^2$$

20. The sum of series
$$\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots$$
 is

$$(1)\frac{\left(e^2-1\right)}{2}$$

(2)
$$\frac{(e-1)^2}{2e}$$

$$(3)\frac{\left(e^2-1\right)}{2e}$$

$$(4) \frac{\left(e^2-2\right)}{e}$$

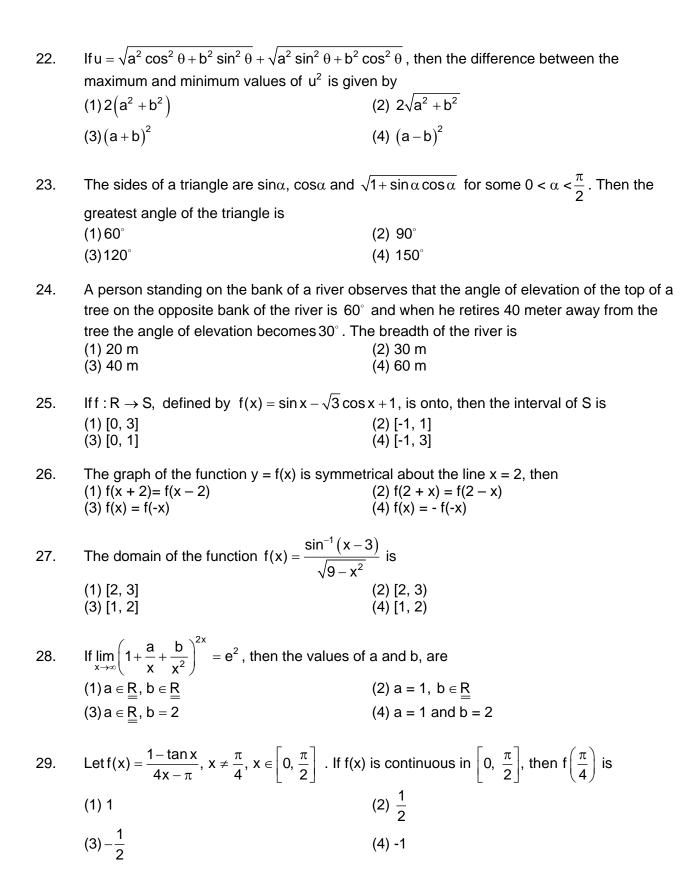
21. Let
$$\alpha$$
, β be such that $\pi < \alpha - \beta < 3\pi$. If $\sin \alpha + \sin \beta = -\frac{21}{65}$ and $\cos \alpha + \cos \beta = -\frac{27}{65}$, then the value of $\cos \frac{\alpha - \beta}{2}$ is

$$(1)-\frac{3}{\sqrt{130}}$$

(2)
$$\frac{3}{\sqrt{130}}$$

$$(3)\frac{6}{65}$$

$$(4) - \frac{6}{65}$$



If $x = e^{y + e^{y + ... to \infty}}$, x > 0, then $\frac{dy}{dx}$ is

30.

$$(1)\frac{x}{1+x}$$

(2)
$$\frac{1}{x}$$

$$(3)\frac{1-x}{x}$$

(4)
$$\frac{1+x}{x}$$

A point on the parabola $y^2 = 18x$ at which the ordinate increases at twice the rate of the 31. abscissa is

$$(2)(2, -4)$$

$$(3)\left(\frac{-9}{8}, \frac{9}{2}\right)$$

$$(4)\left(\frac{9}{8}, \frac{9}{2}\right)$$

32. A function y = f(x) has a second order derivative f''(x) = 6(x - 1). If its graph passes through the point (2, 1) and at that point the tangent to the graph is y = 3x - 5, then the function is

$$(1)(x-1)^2$$

(2)
$$(x-1)^3$$

$$(3)(x+1)^3$$

(4)
$$(x+1)^2$$

33. The normal to the curve $x = a(1 + \cos\theta)$, $y = a\sin\theta$ at ' θ ' always passes through the fixed point

If 2a + 3b + 6c = 0, then at least one root of the equation $ax^2 + bx + c = 0$ lies in the interval 34.

 $\lim_{n\to\infty}\sum_{r=1}^n\frac{1}{n}e^{\frac{r}{n}}$ is 35.

$$(2) e - 1$$

$$(3) 1 - e$$

$$(4) e + 1$$

If $\int \frac{\sin x}{\sin(x-\alpha)} dx = Ax + B \log \sin(x-\alpha) + C$, then value of (A, B) is 36.

(1)
$$(\sin\alpha, \cos\alpha)$$

(2)
$$(\cos\alpha, \sin\alpha)$$

(3) (-
$$\sin\alpha$$
, $\cos\alpha$)

(4) (-
$$\cos \alpha$$
, $\sin \alpha$)

 $\int \frac{dx}{\cos x - \sin x}$ is equal to 37.

$$(1)\frac{1}{\sqrt{2}}\log\left|\tan\left(\frac{x}{2}-\frac{\pi}{8}\right)\right|+C$$

(2)
$$\frac{1}{\sqrt{2}} \log \left| \cot \left(\frac{x}{2} \right) \right| + C$$

$$(3) \frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} - \frac{3\pi}{8} \right) \right| + C$$

$$(4) \frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} + \frac{3\pi}{8} \right) \right| + C$$

The value of $\int_{1}^{3} |1-x^2| dx$ is 38.

$$(1)\frac{28}{3}$$

(2) $\frac{14}{3}$

$$(3)\frac{7}{3}$$

(4) $\frac{1}{3}$

39. The value of I = $\int_{0}^{\pi/2} \frac{(\sin x + \cos x)^{2}}{\sqrt{1 + \sin 2x}} dx \text{ is}$

(2) 1

(4) 3

40. If $\int_{0}^{\pi} xf(\sin x) dx = A \int_{0}^{\pi/2} f(\sin x) dx$, then A is

 $(2) \pi$

$$(3)\frac{\pi}{4}$$

(4) 2π

41. If $f(x) = \frac{e^x}{1 + e^x}$, $I_1 = \int\limits_{f(-a)}^{f(a)} xg\{x(1 - x)\}dx$ and $I_2 = \int\limits_{f(-a)}^{f(a)} g\{x(1 - x)\}dx$ then the value of $\frac{I_2}{I_1}$ is

(2) -3

$$(3) -1$$

(-) 1

42. The area of the region bounded by the curves y = |x - 2|, x = 1, x = 3 and the x-axis is

(1) 1

(2) 2

(3) 3

(4) 4

43. The differential equation for the family of curves $x^2 + y^2 - 2ay = 0$, where a is an arbitrary constant is

$$(1) 2(x^2 - y^2)y' = xy$$

(2) $2(x^2 + y^2)y' = xy$

$$(3)(x^2-y^2)y'=2xy$$

(4) $(x^2 + y^2)y' = 2xy$

44. The solution of the differential equation $y dx + (x + x^2y) dy = 0$ is

$$(1)-\frac{1}{xy}=C$$

(2) $-\frac{1}{xy} + \log y = C$

$$(3)\frac{1}{xv} + log y = C$$

(4) $\log y = Cx$

45. Let A (2, -3) and B(-2, 1) be vertices of a triangle ABC. If the centroid of this triangle moves on the line 2x + 3y = 1, then the locus of the vertex C is the line

$$(1) 2x + 3y = 9$$

(2)
$$2x - 3y = 7$$

$$(3) 3x + 2y = 5$$

$$(4) 3x - 2y = 3$$

46. The equation of the straight line passing through the point (4, 3) and making intercepts on the co-ordinate axes whose sum is −1 is

(1)
$$\frac{x}{2} + \frac{y}{3} = -1$$
 and $\frac{x}{-2} + \frac{y}{1} = -1$

(2)
$$\frac{x}{2} - \frac{y}{3} = -1$$
 and $\frac{x}{-2} + \frac{y}{1} = -1$

(3)
$$\frac{x}{2} + \frac{y}{3} = 1$$
 and $\frac{x}{2} + \frac{y}{1} = 1$

(4)
$$\frac{x}{2} - \frac{y}{3} = 1$$
 and $\frac{x}{-2} + \frac{y}{1} = 1$

If the sum of the slopes of the lines given by $x^2 - 2cxy - 7y^2 = 0$ is four times their product, 47. then c has the value

$$(2) -1$$

 $(4) -2$

$$(4) -2$$

If one of the lines given by $6x^2 - xy + 4cy^2 = 0$ is 3x + 4y = 0, then c equals 48.

$$(2) -$$

$$(4) -3$$

If a circle passes through the point (a, b) and cuts the circle $x^2 + y^2 = 4$ orthogonally, then 49. the locus of its centre is

$$(1) 2ax + 2by + (a^2 + b^2 + 4) = 0$$

(2)
$$2ax + 2by - (a^2 + b^2 + 4) = 0$$

$$(3) 2ax - 2by + (a^2 + b^2 + 4) = 0$$

(4)
$$2ax - 2by - (a^2 + b^2 + 4) = 0$$

A variable circle passes through the fixed point A (p, q) and touches x-axis. The locus of the 50. other end of the diameter through A is

$$(1)(x-p)^2 = 4qy$$

(2)
$$(x-q)^2 = 4py$$

$$(3)(y-p)^2 = 4qx$$

(4)
$$(y-q)^2 = 4px$$

51. If the lines 2x + 3y + 1 = 0 and 3x - y - 4 = 0 lie along diameters of a circle of circumference 10π , then the equation of the circle is

(1)
$$x^2 + y^2 - 2x + 2y - 23 = 0$$

(2)
$$x^2 + y^2 - 2x - 2y - 23 = 0$$

(3)
$$x^2 + y^2 + 2x + 2y - 23 = 0$$

(4)
$$x^2 + y^2 + 2x - 2y - 23 = 0$$

The intercept on the line y = x by the circle $x^2 + y^2 - 2x = 0$ is AB. Equation of the circle on 52. AB as a diameter is

(1)
$$x^2 + y^2 - x - y = 0$$

(2)
$$x^2 + y^2 - x + y = 0$$

(3)
$$x^2 + y^2 + x + y = 0$$

(4)
$$x^2 + y^2 + x - y = 0$$

If $a \neq 0$ and the line 2bx + 3cy + 4d = 0 passes through the points of intersection of the 53. parabolas $y^2 = 4ax$ and $x^2 = 4ay$, then

$$(1) d^2 + (2b + 3c)^2 = 0$$

(2)
$$d^2 + (3b + 2c)^2 = 0$$

$$(3) d^2 + (2b - 3c)^2 = 0$$

$$(4) d^2 + (3b - 2c)^2 = 0$$

The eccentricity of an ellipse, with its centre at the origin, is $\frac{1}{2}$. If one of the directrices is x = 54.

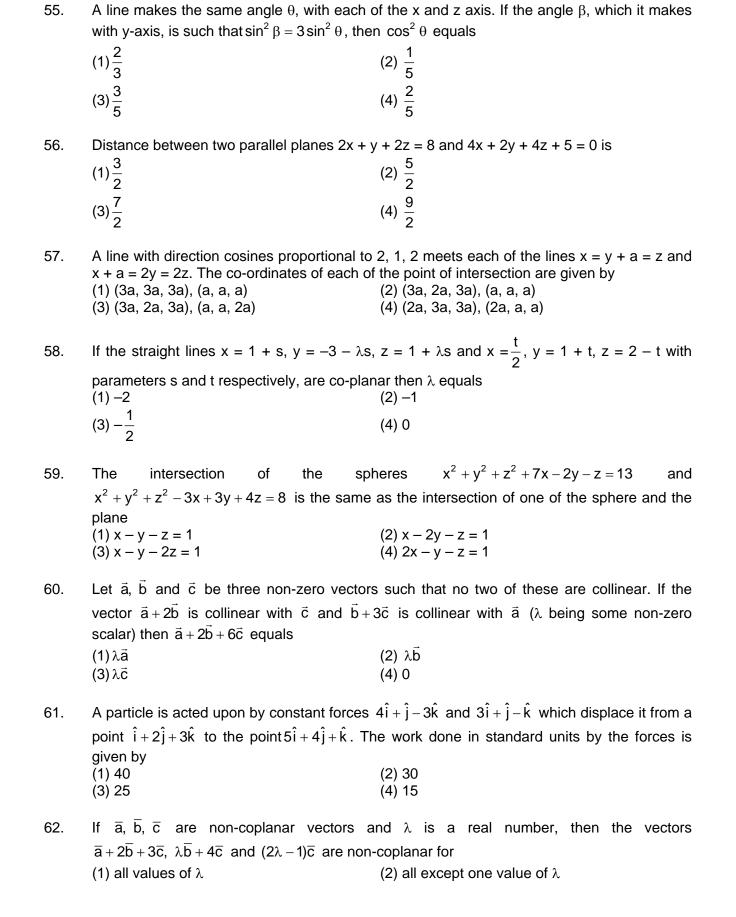
4, then the equation of the ellipse is

$$(1)3x^2 + 4y^2 = 1$$

(2)
$$3x^2 + 4y^2 = 12$$

$$(3) 4x^2 + 3y^2 = 12$$

(4)
$$4x^2 + 3y^2 = 1$$



(3)	all (except	two	values	of	2

(4) no value of λ

63. Let \overline{u} , \overline{v} , \overline{w} be such that $|\overline{u}| = 1$, $|\overline{v}| = 2$, $|\overline{w}| = 3$. If the projection \overline{v} along \overline{u} is equal to that of \overline{w} along \overline{u} and \overline{v} , \overline{w} are perpendicular to each other then $|\overline{u} - \overline{v} + \overline{w}|$ equals

(2) $\sqrt{7}$

 $(3)\sqrt{14}$

(4) 14

64. Let \overline{a} , \overline{b} and \overline{c} be non-zero vectors such that $(\overline{a} \times \overline{b}) \times \overline{c} = \frac{1}{3} |\overline{b}| |\overline{c}| \overline{a}$. If θ is the acute angle between the vectors \overline{b} and \overline{c} , then $\sin \theta$ equals

$$(1)\frac{1}{3}$$

(2) $\frac{\sqrt{2}}{3}$

$$(3)\frac{2}{3}$$

(4) $\frac{2\sqrt{2}}{3}$

65. Consider the following statements:

- (a) Mode can be computed from histogram
- (b) Median is not independent of change of scale
- (c) Variance is independent of change of origin and scale.

Which of these is/are correct?

(1) only (a)

(2) only (b)

(3) only (a) and (b)

(4) (a), (b) and (c)

66. In a series of 2n observations, half of them equal a and remaining half equal –a. If the standard deviation of the observations is 2, then |a| equals

$$(1)\frac{1}{n}$$

(2) $\sqrt{2}$

(4) $\frac{\sqrt{2}}{n}$

67. The probability that A speaks truth is $\frac{4}{5}$, while this probability for B is $\frac{3}{4}$. The probability that they contradict each other when asked to speak on a fact is

 $(1)\frac{3}{20}$

(2) $\frac{1}{5}$

 $(3)\frac{7}{20}$

 $(4) \frac{4}{5}$

68. A random variable X has the probability distribution:

X:	1	2	3	4	5	6	7	8
p(X):	0.15	0.23	0.12	0.10	0.20	0.08	0.07	0.05

For the events $E = \{X \text{ is a prime number}\}\$ and $F = \{X < 4\}$, the probability $P \ (E \cup F)$ is

(1) 0.87

(2) 0.77

(3) 0.35

(4) 0.50

69. The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probability of 2 successes is

$$(1)\frac{37}{256}$$

(2)
$$\frac{219}{256}$$

$$(3)\frac{128}{256}$$

$$(4) \frac{28}{256}$$

70. With two forces acting at a point, the maximum effect is obtained when their resultant is 4N. If they act at right angles, then their resultant is 3N. Then the forces are

(1)
$$(2 + \sqrt{2})N$$
 and $(2 - \sqrt{2})N$

(2)
$$(2 + \sqrt{3})N$$
 and $(2 - \sqrt{3})N$

$$(3) \left(2 + \frac{1}{2}\sqrt{2}\right) N \text{ and } \left(2 - \frac{1}{2}\sqrt{2}\right) N$$

(4)
$$\left(2+\frac{1}{2}\sqrt{3}\right)N$$
 and $\left(2-\frac{1}{2}\sqrt{3}\right)N$

71. In a right angle $\triangle ABC$, $\angle A = 90^{\circ}$ and sides a, b, c are respectively, 5 cm, 4 cm and 3 cm. If a force \vec{F} has moments 0, 9 and 16 in N cm. units respectively about vertices A, B and C, then magnitude of \vec{F} is

72. Three forces \vec{P} , \vec{Q} and \vec{R} acting along IA, IB and IC, where I is the incentre of a \triangle ABC, are in equilibrium. Then $\vec{P}: \vec{Q}: \vec{R}$ is

$$(1)\cos\frac{A}{2}:\cos\frac{B}{2}:\cos\frac{C}{2}$$

(2)
$$\sin \frac{A}{2} : \sin \frac{B}{2} : \sin \frac{C}{2}$$

(3)
$$\sec \frac{A}{2}$$
: $\sec \frac{B}{2}$: $\sec \frac{C}{2}$

(4)
$$\csc \frac{A}{2} : \csc \frac{B}{2} : \csc \frac{C}{2}$$

73. A particle moves towards east from a point A to a point B at the rate of 4 km/h and then towards north from B to C at the rate of 5 km/h. If AB = 12 km and BC = 5 km, then its average speed for its journey from A to C and resultant average velocity direct from A to C are respectively

(1)
$$\frac{17}{4}$$
 km/h and $\frac{13}{4}$ km/h

(2)
$$\frac{13}{4}$$
 km/h and $\frac{17}{4}$ km/h

(3)
$$\frac{17}{9}$$
 km/h and $\frac{13}{9}$ km/h

(4)
$$\frac{13}{9}$$
 km/h and $\frac{17}{9}$ km/h

74. A velocity $\frac{1}{4}$ m/s is resolved into two components along OA and OB making angles 30° and 45° respectively with the given velocity. Then the component along OB is

(1)
$$\frac{1}{8}$$
 m/s

(2)
$$\frac{1}{4}(\sqrt{3}-1)$$
 m/s

(3)
$$\frac{1}{4}$$
 m/s

(4)
$$\frac{1}{8}(\sqrt{6}-\sqrt{2})$$
 m/s

75. If t_1 and t_2 are the times of flight of two particles having the same initial velocity u and range R on the horizontal, then $t_1^2 + t_2^2$ is equal to

$$(1)\frac{u^2}{g}$$

(2)
$$\frac{4u^2}{g^2}$$

$$(3)\frac{u^2}{2g}$$

FIITJEE AIEEE - 2004 (MATHEMATICS)

ANSWERS

1.	3	16.	2	31. 4	46. 4	61. 1
2.	1	17.	1	32. 2	47. 3	62. 3
3.	3	18.	1	33. 1	48. 4	63. 3
4.	2	19.	2	34. 1	49. 2	64. 4
5.	4	20.	2	35. 2	50. 1	65. 3
6.	2	21.	1	36. 2	51. 1	66. 3
7.	2	22.	4	37. 4	52. 1	67. 3
8.	1	23.	3	38. 1	53. 1	68. 2
9.	4	24.	1	39. 3	54. 2	69. 4
10.	3	25.	4	40. 2	55. 3	70. 3
11.	4	26.	2	41. 1	56. 3	71. 3
12.	3	27.	2	42. 1	57. 2	72. 1
13.	4	28.	2	43. 3	58. 1	73. 1
14.	1	29.	3	44. 2	59. 4	74. 4
15.	3	30.	3	45. 1	60. 4	75. 2