Graduate Aptitude Test in Engineering (GATE) is an all India test and the test is carried out jointly by the Indian Institute of Science and seven Indian Institutes of Technology for admission to Masters in Technology (M.Tech) post graduate program. GATE is administered by these top technology institutes coming under the Department of Higher Education and National Coordination Board.
GATE 2012 Important Dates Online Application submission: Started on 12 September 2011 Last date for Submission of Online Application: 17 October 2011 Availability of admit card (online): 02 January 2012 GATE 2012 Online Examination : Sunday 29 January 2012 GATE 2012 Offline Examination : Sunday 12 February 2012 GATE 2012 results : Thursday 15 March 2012
Download Previous Year Question Papers Download Computer Science & Technology Paper  GATE 2010
Download Computer Science & Technology Paper  GATE 2009
Download Computer Science & Technology Paper  GATE 2008
Download Computer Science & Technology Paper  GATE 2007
Download Computer Science & Technology Paper  GATE 2006
Download Computer Science & Technology Paper  GATE 2005
Download Computer Science & Technology Paper  GATE 2004
Computer Science and Engineering Syllabus
Engineering Mathematics Mathematical Logic: Propositional Logic; First Order Logic. Probability: Conditional Probability; Mean, Median, Mode and Standard Deviation; Random Variables; Distributions; uniform, normal, exponential, Poisson, Binomial. Set Theory & Algebra: Sets; Relations; Functions; Groups; Partial Orders; Lattice; Boolean Algebra. Combinatorics: Permutations; Combinations; Counting; Summation; generating functions; recurrence relations; asymptotics. Graph Theory: Connectivity; spanning trees; Cut vertices & edges; covering; matching; independent sets; Colouring; Planarity; Isomorphism. Linear Algebra: Algebra of matrices, determinants, systems of linear equations, Eigen values and Eigen vectors. Numerical Methods: LU decomposition for systems of linear equations; numerical solutions of nonlinear algebraic equations by Secant, Bisection and NewtonRaphson Methods; Numerical integration by trapezoidal and Simpson's rules. Calculus: Limit, Continuity & differentiability, Mean value Theorems, Theorems of integral calculus, evaluation of definite & improper integrals, Partial derivatives, Total derivatives, maxima & minima.
Computer Science and Information technology Digital Logic: Logic functions, Minimization, Design and synthesis of combinational and sequential circuits; Number representation and computer arithmetic (fixed and floating point). Computer Organization and Architecture: Machine instructions and addressing modes, ALU and datapath, CPU control design, Memory interface, I/O interface (Interrupt and DMA mode), Instruction pipelining, Cache and main memory, Secondary storage. Programming and Data Structures: Programming in C; Functions, Recursion, Parameter passing, Scope, Binding; Abstract data types, Arrays, Stacks, Queues, Linked Lists, Trees, Binary search trees, Binary heaps. Algorithms: Analysis, Asymptotic notation, Notions of space and time complexity, Worst and average case analysis; Design: Greedy approach, Dynamic programming, Divideandconquer; Tree and graph traversals, Connected components, Spanning trees, Shortest paths; Hashing, Sorting, Searching. Asymptotic analysis (best, worst, average cases) of time and space, upper and lower bounds, Basic concepts of complexity classes – P, NP, NPhard, NPcomplete. Theory of Computation: Regular languages and finite automata, Context free languages and Pushdown automata, Recursively enumerable sets and Turing machines, Undecidability. Compiler Design: Lexical analysis, Parsing, Syntax directed translation, Runtime environments, Intermediate and target code generation, Basics of code optimization. Operating System: Processes, Threads, Interprocess communication, Concurrency, Synchronization, Deadlock, CPU scheduling, Memory management and virtual memory, File systems, I/O systems, Protection and security. Databases: ERmodel, Relational model (relational algebra, tuple calculus), Database design (integrity constraints, normal forms), Query languages (SQL), File structures (sequential files, indexing, B and B+ trees), Transactions and concurrency control. Information Systems and Software Engineering: information gathering, requirement and feasibility analysis, data flow diagrams, process specifications, input/output design, process life cycle, planning and managing the project, design, coding, testing, implementation, maintenance. Computer Networks: ISO/OSI stack, LAN technologies (Ethernet, Token ring), Flow and error control techniques, Routing algorithms, Congestion control, TCP/UDP and sockets, IP(v4), Application layer protocols (icmp, dns, smtp, pop, ftp, http); Basic concepts of hubs, switches, gateways, and routers. Network security – basic concepts of public key and private key cryptography, digital signature, firewalls. Web technologies: HTML, XML, basic concepts of clientserver computing.
